Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clin Biochem ; 118: 110584, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2321815

ABSTRACT

BACKGROUND: Non-Coronavirus disease 2019 (COVID-19) pneumonia and COVID-19 have similar clinical features but last for different periods, and consequently, require different treatment protocols. Therefore, they must be differentially diagnosed. This study uses artificial intelligence (AI) to classify the two forms of pneumonia using mainly laboratory test data. METHODS: Various AI models are applied, including boosting models known for deftly solving classification problems. In addition, important features that affect the classification prediction performance are identified using the feature importance technique and SHapley Additive exPlanations method. Despite the data imbalance, the developed model exhibits robust performance. RESULTS: eXtreme gradient boosting, category boosting, and light gradient boosted machine yield an area under the receiver operating characteristic of 0.99 or more, accuracy of 0.96-0.97, and F1-score of 0.96-0.97. In addition, D-dimer, eosinophil, glucose, aspartate aminotransferase, and basophil, which are rather nonspecific laboratory test results, are demonstrated to be important features in differentiating the two disease groups. CONCLUSIONS: The boosting model, which excels in producing classification models using categorical data, excels in developing classification models using linear numerical data, such as laboratory tests. Finally, the proposed model can be applied in various fields to solve classification problems.

2.
BMC Bioinformatics ; 24(1): 190, 2023 May 09.
Article in English | MEDLINE | ID: covidwho-2312815

ABSTRACT

BACKGROUND: An artificial-intelligence (AI) model for predicting the prognosis or mortality of coronavirus disease 2019 (COVID-19) patients will allow efficient allocation of limited medical resources. We developed an early mortality prediction ensemble model for COVID-19 using AI models with initial chest X-ray and electronic health record (EHR) data. RESULTS: We used convolutional neural network (CNN) models (Inception-ResNet-V2 and EfficientNet) for chest X-ray analysis and multilayer perceptron (MLP), Extreme Gradient Boosting (XGBoost), and random forest (RF) models for EHR data analysis. The Gradient-weighted Class Activation Mapping and Shapley Additive Explanations (SHAP) methods were used to determine the effects of these features on COVID-19. We developed an ensemble model (Area under the receiver operating characteristic curve of 0.8698) using a soft voting method with weight differences for CNN, XGBoost, MLP, and RF models. To resolve the data imbalance, we conducted F1-score optimization by adjusting the cutoff values to optimize the model performance (F1 score of 0.77). CONCLUSIONS: Our study is meaningful in that we developed an early mortality prediction model using only the initial chest X-ray and EHR data of COVID-19 patients. Early prediction of the clinical courses of patients is helpful for not only treatment but also bed management. Our results confirmed the performance improvement of the ensemble model achieved by combining AI models. Through the SHAP method, laboratory tests that indicate the factors affecting COVID-19 mortality were discovered, highlighting the importance of these tests in managing COVID-19 patients.


Subject(s)
COVID-19 , Deep Learning , Humans , Electronic Health Records , COVID-19/diagnostic imaging , X-Rays , Artificial Intelligence
3.
BMC Pulm Med ; 23(1): 121, 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2291798

ABSTRACT

BACKGROUND: Paralysis of medical systems has emerged as a major problem not only in Korea but also globally because of the COVID-19 pandemic. Therefore, early identification and treatment of COVID-19 are crucial. This study aims to develop a machine-learning algorithm based on bio-signals that predicts the infection three days in advance before it progresses from mild to severe, which may necessitate high-flow oxygen therapy or mechanical ventilation. METHODS: The study included 2758 hospitalized patients with mild severity COVID-19 between July 2020 and October 2021. Bio-signals, clinical information, and laboratory findings were retrospectively collected from the electronic medical records of patients. Machine learning methods included random forest, random forest ranger, gradient boosting machine, and support vector machine (SVM). RESULTS: SVM showed the best performance in terms of accuracy, kappa, sensitivity, detection rate, balanced accuracy, and run-time; the area under the receiver operating characteristic curve was also quite high at 0.96. Body temperature and SpO2 three and four days before discharge or exacerbation were ranked high among SVM features. CONCLUSIONS: The proposed algorithm can predict the exacerbation of severity three days in advance in patients with mild COVID-19. This prediction can help effectively manage the reallocation of appropriate medical resources in clinical settings. Therefore, this algorithm can facilitate adequate oxygen therapy and mechanical ventilator preparation, thereby improving patient prognosis, increasing the efficiency of medical systems, and mitigating the damage caused by a global pandemic.


Subject(s)
COVID-19 , Humans , Retrospective Studies , Pandemics , Morbidity , Machine Learning , Algorithms , Oxygen
4.
Diagnostics (Basel) ; 12(6)2022 Jun 14.
Article in English | MEDLINE | ID: covidwho-1911234

ABSTRACT

This study was designed to develop machine-learning models to predict COVID-19 mortality and identify its key features based on clinical characteristics and laboratory tests. For this, deep-learning (DL) and machine-learning (ML) models were developed using receiver operating characteristic (ROC) area under the curve (AUC) and F1 score optimization of 87 parameters. Of the two, the DL model exhibited better performance (AUC 0.8721, accuracy 0.84, and F1 score 0.76). However, we also blended DL with ML, and the ensemble model performed the best (AUC 0.8811, accuracy 0.85, and F1 score 0.77). The DL model is generally unable to extract feature importance; however, we succeeded by using the Shapley Additive exPlanations method for each model. This study demonstrated both the applicability of DL and ML models for classifying COVID-19 mortality using hospital-structured data and that the ensemble model had the best predictive ability.

SELECTION OF CITATIONS
SEARCH DETAIL